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BEHAVIOR OF VORTEX SYSTEM BEEIND CRUCIFORM WINGS -

MOTIONS OF FULLY ROLLED-UP

By Alvin H. Sacks

f S-Y

VORTICES

‘I!hemotions of four fuSLy rolled-up yortices representing the vortex
system trailing behind cruciform wings are studied by theoretical and
visual-flow methods. The analysis applies throughout the Mach nuniber
range.

Equations are developed for the three-dimensional paths traced by .
the vortices behind a cruciform wing banked 49°, and calculations We
made of the distance behind the wing at which the upper two vortices
pass through the lower two. It is found that this “leapfrog” distance
depends upon the lift coefficient, aspect ratio, and span loading of the
cruciform wing, and that for low-aspect-ratio cruciform wings leapfrog-
ging may occur within two chord lengths of the trailing edges.

The various types of vortex motion to be expected throughout the
angle-pf-attack range are considered in some detail, and the interaction
of the two vortex sheets @ed from the crucifom wing
account. Results of some water-tank studies are also
compared with the theory.

.
INTRODUCTION

The downwash behind plane wings has been studied
numiberof authors and considerable attention has been

is taken into
presented and

theoretically
given to the

bya

rolling up of the trailing vortex sheet. The analysis of Kaden
(referenc~ 1) predicted the distance behind the wing at which the sheet
may be considered to be fully rolled up into two trailing vortices, and
this work was later used (in reference 2) to demonstrate the usefulness
of the single horseshoe-vortex approximation for the calculation of the
downwash behind wings of low aspect ratio. Since at the present time
cruciform configurations are lsrgely confined to wings of low aspect
ratio, the rolling w of the trailing vortex sheets is again of major
concern, and the behavior of the fully rolled-up vortices is-again of
considerable interest.

.
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While in.the case of the plane wing the vortex sheet became rolled
up into a vortex pair which simply moved downward at a uniform speed at
great distances b@ind the,wing, the analogous problem for cruciform
wings is necessarily more complicated. Instead of the two rolled-up
vortices, there are now presumably four (one from each wing panel) and
their induced effects upon one another are such as to produce quite
intricate paths of motion. The downwash field, of course, may therefore
become extremely involved.. This report is concerned with a study of the
motions of the four rolled-up vortices and their effect on the downwash
behind cruciform wings.”

SYMBOLS

A

b

c

CL

CL‘

C-J

d

f

G

L

L’

M

~

Q2

..- .

aspect ratio

span of one wing (2s.) .

root chord

()lift coefficient of cruciform wing A
/-..@ulift coefficient of plane wing ~
q~

section lift coefficient for plane wing

distance behind

distance behind
are collinear

constant of the

wing trailing edge

wing trailing edge where four rolled-up vortices “
(leapfrog distance)

motion related to distance between centers of
gravity of two vortex systems (yl + ya)

ysrameter which depends on initial %ortex positions

[%%j ‘

lift of Cruciform wing

lift of @ane wing

free-stream Mach number

free-stream dynamic pressure {Lp$ “
[2

k
psrameter used for periodic motion “

(4-G)
4G

.
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par~eter used for aperiodic motion (-Q2)

#G
4(G+ 4)

area of one wing

local semispan of one wing

msximum semispan of one wing

semispan of rolled-up vortices from one wing

time

free-stresm velocity

velocity of vortex center in y direction

velocity of vortex center in z direction

right-hand orthogonal coordinates with x axis in stream
direction

.

Yo> Z. ~ti~ ~~~s of yl ~d 21

21>2 vertical distance between vortices 1 and 2
(See sketch onpage g.) ‘

.I*
a angle of attack of cruciform wing axis

at angle of attack of one wing

B angle of sideslip of one wing

()

rl
7 ratio of vortex strengths

r;

r circulation (positive counterclockwise)

P mass density

%ibscripts 1, 2, s, and 4 refer to vortex number. (See sketch on page 5.)

. .—— .— . —_._—_ ——..-. . ..—.—
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GENERAL ANALYSIS
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0

!l?hephenomenon of the rolling up of the vortex sheet behind plane
wings was tiscussed as early as 1907 by Lanche8ter (reference 3) and has
since been the subject of a large nmiber of investigations. As a result
of such investigations, it has been found (reference 2) that, whereas
the vortex sheet behind wings of high aspect ratio maybe considered to
remain flat at the tail location, a good approximation to the downwash
several chord lengths behind wings of low aspect ratio is often obtained
by considering the sheet to be fully rolled up into two trailing vortices.
In the case of the cruciform wing, as in the case of the plane wing, the
rate of rolling up of the vortex sheets will depend upon the aspect ratio
of each wing. It should therefore be possible to qbtain a reasonably
good appro~tion to the downwash field beMnd law-aspect-ratio cruci-
form wings by considering the vortex sheets to be fully rolled ~j that

is, by replacing the two vortex sheets by four discrete vortices. It is
with this simplified model of the physical probla that the analysis of
this report is concerned at the outset. subsequently, it will be seen
that the theory can%e modified to provide a more accurate representation
of the actual flow field.

With low-aspect-ratiowings in source-free”flowthe linearized dif-
ferential equation for the perturbation velocity potential. q

can be satisfactorily
dimensional equation

(l-NF)PH + 9H +

approdmated at all

(1) c

Mach nunibersby the two- ,,

0

r
since (1-M2)~= is much smaller than pm andqzz if ~1.~ A is
small. (See references 4 and ~.) !Cherefore,the problem of the motions
of the four rolled-up vortices can first be treated by lateral stri~
theory as a two-dimensionalproblem in planes perpendicular to the
flight direction. For the cruciform wing at 45° angle of bank, where a
vertical plane of symmetry is present, the problem is thus reduced to
that of the motion of two ptis of vortices with a comon axis. This
problem was first attackedby Love (reference 6) and later by Hicks
(reference 7), both in connection with the analogous three-dimensional ,
problem of the motion of vortex rings. Unfortunately, neither of these
authors worked completely the problem of interest here, the former being
concerned only with the relative paths of the vortex pairs about each
other, whereas the latter was concerned chiefly with the actual problem
of the vortex rings.

Since this paper is concerned with the three-dimensionalpaths of
the four rolled-up vortices behind the wing, the paths in transverse
planes will first be determined, and will thenbe related to the elapsed
time or the distance the wing.has traveled in the flight direction.
The analysis willbe confined to the case of 45° bank.
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Determination of Vorte”x’Paths

.

.

.

Relative motions in transverse @ane.- The motion of any system of
two-dimensional vortex filaments is determinedly the induced velocity of
each vortex due to all.the other vortices of the system. It is shown in
reference 8 that the induced velocity of any particular filament can be
obtained from the function

(3)

where m<n and & = ym + l%. That is, if one writes

“w = Q+ilj (4)

then $ is a constant of the motion and is analogous to the stream
function in giving the components of the velocity of the particular
vortex. Thus, the path of each vortex can be determined from equa-
tions (3) and (4), provided that the motion of one vortex determines the
motions of all the other vortices of the system. (Such is the case, for
instance, where all the vortices but one are images of the one.) In the
present problem, since only two of the four vortices are images, equa-
tions (3) and (4) are not sufficient to describe completely the motion of
the system. However, these equations will be useful indete~ the ~
paths of two of the vortices relative to the other two. It will be seen
later that this information is’of considerable interest.

For the cruciform wing banked 45°, the simplified vortex system as
viewed in the y,z plane consists of two pairs of two-dimensional
vortices having a common plane of symmetry as shown in the sketch.
It is apparent from the symmetry of
the configuration that

t

z

r~ rl
rl = -r~; r2 = -r~

c
●

7
.

Further, if each wing of the cruciform ‘
can be considered as a plane wing in
sideslip (as was demonstrated in
reference 9 for the calculation of I
load distribution) it follows that

r~

c 3

r=
rl = -r~; r= = -r~ . .

since the vortex sy&em far behind a
plane lifting wing must consist of two
equal (and opposite) vortices, “~y

although their positions will depend
!&

plane f .

upon the angle of sideslip while symmet

their strength will depend upon the

..-. .--, ---- --- ——--- ..—. —— .---—- .. ..— _._— _ ..——. .—. ...— — .—--- . —. -. .—— . -
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lift. On this basis, it can be concluded that

rl =rz=-r~=-r~=r

ActualJy, since the vortex sheets trailing behind the cruciform wing
must influence one another during the rolling-up process itself, the
assumption that the wings act independently is not strictly applicable
to considerations of the wake as in the present problem. However, this
complication wilJ be deferred to a later section and the analysis will
first be developed on the basis of four vortices of equal strength.
Hence, from this point on, the subscripts will be omitted in reference
to the vortex strengths which wSU be referred to simply as plus or
minus r.

When the directions of rotation of the four vortices are taken into
consideration, equation (3) can be written for the present problem as:

ir=
w==

[
log (11-C2) - log (&ca) + log (!s-[4)’ -

411

10g (KI-!J4) - 10g (!I-!JJ - 10g (C2-C4)1(5)

Noting further that !4 ~ ‘!& are siqply the-negative complex conju-

gates of cl and ~=, that is ~4 = -cl, ~~ = -~2, evtim (5) c~be
expressed as

(6)

Due to the symmetry (see sketch on page ~),the vortex system may
also be considered as two ~oups of vortices with equal and o~osite total
circulation (one group on either side of the plane of symmetry). For
such a pair of groups, the centers of gravityl of the two groups must
remain a fixed distance apart. (See reference 10.) In other words,
the center of gravity of each ~oup must move parallel to the plane of
symmetry. Since here the strengths are equal in magnitude, this maybe
stated as

xyiri = r(yl+y.J y~+y~ f
Yc.g. ‘y 2r ‘—=22

= constant (7)

.

‘The center of gravity of a WOUp of vortices is defined as the center
of gravity of-a similar field of point masses, the mass of each being
proportional to the strength of the corresponding vortex. Negative
masses correspond to negative circulations.

._ —— —.-— .— —— ——-... — .--——.——..—.—. —... _..-
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With this information, equation (6) can be qressed in terms of the
coordinates y and Z and Si@ified to “

ir2w=—
{

~og (Y1-Y2)2 + (Z1-Z’2)2

4# 4~ya [F+(z1-z2~l 1
Now, since W is purely imaginary, equation (4) is simply

(8)

(9)

At this point, a moving
pair of vortices d.WayB
of tiiable

coor&lnate system is introduced such that one
lies on the y sxis. This is done by a change

0

%,2 =’% - % (lo)

Now, noting that y= = f - YI~ e~uatim (9) becomes

2

“[

(al-f )2 + z~,22

$%@”g 4Y1(f-Yl)(~+zl,22 )1 (IL)

Setting * of equation (Xl) equal to a constant then yields an equation
for the paths of vortices 1 and 2 relative to each other. Thus,

(2y~-f)2 + 21,22

Yl(f-Yl)(~+&22 )
= constant

or

[+-J +(+Y .Comtmt.. . ;*}
+(’-9[’+(W1 ‘ J

determines’the relative paths of vortices 1 and 2 (and also 3 and 4) once
[ the value of the constant G is determined. .

In order to evaluate G of eq&tion (12), one must determine the
Wtial positions of the four vortices. It must be realized, of coume,
that initially (i.e.,.at the trailing edges of the cruciform wings) there
are not fourdiscrete vortices but a cruciform system of vortex sheets.
The immediate problem, then, is to replace these sheets by four vortices
properly located in the ~(or y,z) plane. For the present, it -
suffice to observe that the initial locations of the four vortices mst .
lie on the straight lines fomged by the trailing edges of the wings.

.. —.. —.—------- ...— --. .-—----- —-—.—---———-— - .. —. —.. .--—.—.-——. .- —----
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●

Thus, for 45° bank,

%,2 =y~+yz =fwhenyl=yo (13)

where the subscri~t o refers to the initial value of yl. The actual
determination of y. will be deferred to a later section of this report
in which the physical problem will be considered in more detail.

With the boundary condition expressed in equation (13), equa-
tion (12) canbe written in terms of the initial value of yl:

2 G(,-:)-(2;-J (,4,
()

%,E =
%--

0 1
()

-G~l-~
f.f

where .=(%-’7+’ 1= -2

‘x’-:) :(’-:)
It till be shown later that yo, and~ence G, is a function of -e
of attack for the cruciform-wing configuration.

While equation (14) does not completely describe the motion of the
four vortices, it @elds some interesting information regarding the types
of motion to be expected. For instance, if the relative path described
by equation (14) is a closed curve it can be concluded that the motion
is periodic. The relative paths of the vortices,are plotted in
figure 1 for vafious values of G, “andit is found that the motion is
periodic for G less than 4 and aperiodic for G greater than 4.
This is in agreement with the findings of Uve (reference 6) who
showed that the condition for periodic motion is that

r<3+2&Y (15)

Y2
where r = — at 21,2 = O. That is, r is the ratio of the lateral

Y~

displacements from the plane of symmetry when the four vortices are
collinear (when one @ir is passing through the other). This type of
vortex motion was first discussed by Helmholtz in connection with
vortex rings having the same axis and circulations in the same
direction (reference I.1):

“The foremost widens and travels more slowly, the pursuer
shrinks and travels faster, till finally, if their veloc-
ities are not too different, it overtakes the first and
penetrates it. Then the same game goes on in the opposite
order, so that the rings pass through each other alternately”

—.—. - .———.. — — —.— —.
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Complete motions in transverse plane.- Since the relative paths of
the vortices on either side of the plane of symmetry are given by equa-
tion (14)1 estab~shing the actual path of any one of the four vortices
will completely determine the motion of the system in the y,z plane.
Therefore, the actual path of vortex 1 will nowbe calculated.

‘Thedetermination of any of the individual vortex paths.reqtires
the solution of the foIlowing equation:

(16)

where vn and Wn are the velocity
components of the hth vortex in the
y and z directions, respectively.
If equation (16) is evaluated for
one vortexj say vortex 1, then the
path of vortex 2 canbe obtained
from-equations (7), (10), &d (14),
and the paths of vortices 3 and 4
are found by symmetry. It will be
seen that this is considerably
easier than solving four equations
of the type givenby equation (16).
By adding the contributions of all.
the other vortices to the velocity
components of vortex 1, one finds
(see sketch):

and

r-vl .= r-—cose2+ — C!osea
2fir2 %ra

r r r
WI = -—-—’sin& -—sineg

2fir4 2fir2 2nr=

Further, from the geometry of the system, it is seen that

Cos ’92 21,2 Cos 83 Z1,2
— =

‘2 “ 21,22 + (f - 2y1)2; ~= Z1,22 + f=

and

SiII e= f-a sin es f—= ● — =
r2 Zl;>+ (f -2yl)2’ r~ Zl,22+f2

r4 = an

. . ..— . . .. —.. .—..-. — ....... .- ..-——. ______ . .. .. _ . .—. .—.—.. .—_______ -----
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The velocity components VI and w= can now be expressed in the followlng
“

fOrm:
—

2rz~ *

‘{

-Yl(f-Yl)vl=-
11 [z1,22 + (f-2Y1)%1,22 + fz] }

r

{ }

(f2+zl,22)=8fy12 (f -y=) “wl.-— (18)
4X yl(f2 + z&)[z1,22 + (f - 2YJ21

If equations (14) and (18) are used to express VI and wl as functions
of yl, then equation (16) canbe integrated directly to give the path
of vortex 1. After algebraic manipulation, equation. thus becomes

Y1

/’
#+2f3yI(G-1) -G#y12(G+2)+2G2fy13-G2y14

zI-z. = Wl

. ~. (-f=Y1+Gy12) ~[-(G+4)y~+f(G~)yl-f2] [Gy&fy1+f2]
(19)

where Z. is the initial value of Z1.

If now the numerator of the integrand is divided by the rational
factor in the denominator, and the substitution

is made, then the quantity (z= - Zo) can be expressed as the sum of four
integrals

21-20 = &
Y<$ yl+

-GJ’ q=all - Q2G J’ dq

- Ye-: ~(R2-v? (Q2+T12) Ye-g ~ (R2-q2)(Q2+~2)

dq 2f3 Y1-;

J f

q d~
— -—.

G Ye-: (Q2+72)J(R2-T12)(@+qZ) G Ye-: (Q2+T12)(R2-~2)(Q2+V2)1
(20)

f% = fq4-G)
where R2 - —

4(G+4) ‘d ‘2 - 4G “

+

—— .-.——-z -— . —....——— .
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.
Equation (20) is now in a convenient form if G is less than 4.
corresponds to the range for periodic motion. On the other hand,

./ is greater than 4 (aperiodic), a new constant

.

is introduced so that equation (20) becomes

r +’

[:7
Y1- >f%-zo=J&, &

q2d

(R2-~2)(~2&) +
Ye-:

f

P

--
*4 2.

U

This
if G

.0

+

!Chethird possibility is that G is equal to 4, in which case
Q2=~~= O. Equations (20) and (21) then both reduce to

f
Y~-~ Y1-; yl+

21-20 = -
h[f *+ Zw -fw“- %~-$ q%’”

Yo-~ YO-.5
(22)

The three cases corresponding to equations (20), (21), and (22) will
be treated separately since the integrations will be somewhat different
for each.

For cases where the vortex motion is periodic, that is, when G is
less than 4, the determination of the vortex paths requires the evalua-
tion of the integrals of equation (20). It is seen that the fourth
inte~al of this equation is elementary while the first three are
elliptic. Thus, while the fourth inte~al can be evaluated simply by

1 d(q2), the other integrals require the use of thenoting that q d? = -
2

elliptic transformations

%?hese and subs~quent transfomnationswere obtained from a comprehensive
table of elliptic integrals prepared by Paul Byrd, Ames Laboratory,
NACA.

— — -. -.. . .--e ----- ------- . -—------- ----- —. —.. ..— ..- —.. .—-— . --—. . . . - -
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sn2 U. = sin= 90 =
R2

R2 ~2
k2=—=—

R2 + Q= 16

NACA TN 2603

.

(23)

With these transformations the integrals can he evaluated and the results
expressed in terms of elliptic integrals of the first and second kinds.
The final solution of equation (20), after collection of terms and eval-
uation of the constants, is given in nondimensional form by the expres-
sion

z~ 4G

[ 16G=
E(k,?o)=(k, %) +—

sin ~1 cos ql sin 90 cos Qo—=— —

f 16-G2 8(4-G) l-k2 Si11291
+

where k = ~ and it
4

45° configuration of

(J
sin 91 sin 90

)

+ Yo

F
(24)

l-k= Sti2 ~1 l-k2sin2 To

is recalled that Z. is equal to y. due to the

the initial locations of the vortices.’ (Note that
90 lies in the second quadrant and that 91 increases positively from
To.) Thus, for the.case where the motion is ~eriodic, the motion in
t~ ~~4f plane is completely describedby equations (7), (10), (14)

.

If the motion b“ the y,z plane is not periodic, that is, if G
is greater thsu.kj then the motion of-vortex 1 is described by equa-
tion (21). Here again the first three integrals of this equation sre
elliptic, but now the required transformations are

s?i2 U1 = sin= ql =
R2-(y~:~.

R2-~2
2

R2-
()
yo- g

sn2 U. = sinz q. =
R2-52

R2+2 16 “
k2=—=—

R2 G2 (25)
.

-.— ——--—-——— -_ _—
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I

It should be noted that for this case (aperiodicmotion) when q2 is
less tti ‘~2, all four integrals become imagin&. That’is, zl is
imaginary if I

1?-7 <Q; i (26)

This condition defines the asymptotes of the vortex laths for the
aperiodic motion. This can be seen from the relative paths shown in
figure 1.

If the integrals-of equation (21) are now evaluated for this case,
the resulting expression for the aperiodic path of vortex 1 is

G2Z1
—=

[
E(k$~o)-E(k,ql)‘1 + F(k,90) - dk,~l) +

f G2-16 -1

G’ (tan2(W)

1
—

l-k2 Sin2 91
)

Yo
T

+

(27)

kwhere k = -. ‘The“&tion is now completely definedhy equations (7),
G

(10), (14),-and (27).

For the special case when G is egual to k, all the inte~als are
elementary and can readily be evaluated by making use of the trigono-
metric stistitutions

Cos ql =

The final solution of equation

f’ .

‘~-5 Ye-g
—“ Cos qo = —
R’ R

/

(22) is then

z~ 1 ( )(1 sin P1 sin ‘q.
—=- -

4
Bin VI - Sk % +;. — - —

)
+

f COS2 ~i COS2 $’0

(28)

(29)

. . . —.—... .—. -—- .--— .— ..——..— .—-—-.—-————. . - - ——— .—-—.—. ------ —.. —. . .—.
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Actually, it can be shown that this result is obtainable from either
equation (24) or (27) by taking the limit as G approaches 4. It iS

1 interesting to note that G can assume only positive values and must
lie between 2 and inf~ty as canbe seen from its definition given
with equation (14). !ChUs,the vortex paths in the y,z plane have been
obtained for the entire range of the parameter G. Figure 2 shows the
paths of vortices 1 and 2 for several values of G. The dashed lines
connect correspondingpositions of the two vortices at successive time
Intervals.

Complete motions in three dimensions.- In order to complete the
three-tiensional picture of the four vortex filaments trailing behind
the cruciform wings, a relationship must be obtained between the points
of the paths in the y,z plane and the distance the wing has traveled
in the stream direction. This canbe done by the relationship

‘~ut =+ =“f-=”J% (30)

Equations (14) and (18) can again be used to express V1 as a function
of y~ so that equation (30) can be integrated. W integral thus
becomes

Again using the substitution

Yl q+:

equation (31) can be simplified into three somewhat
one for each of the three regimes of the parameter

For the case when G is less than 4 (periodic
tion (31) can be written as

83rfu
d

‘1-: (f- ~2T=-
JI’J-yo-~ (Q2+v2)&%2) (Q2+~2)

where

different forms,
G.

motion), equa-

a~

R2 =
f2G

and Q2 =
f2(4 - G)

4(G + ,4) 4G

(32)

———.—. ——— ——..———
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For the aperiodic case (G greater than 4), equation (31) becomes

where

while for the
and (33) both

special case when G is equal to 4, equations (32)
reduce to

(34)

The three expressions for the distance behind,the wing can nowbe
solved by use of the proper elliptic,transformations. For G less
than 4, the result is

d Iluf

I

128-=— -
[ 1[E(k,90)=(k,91) ~ +; 1F(k,90)<(It+

fr G(16-G2)

G

(J

sin lpoCos q. sin ql Cos ql

E l-k2 sin2 90 )}&k2 Si112~1
(35)

where ‘, J
2

( ,)
R2- yo-~

and sin2 ~. =
R2

For G greater than 4, the resulting expression is

I

- - ————- - — --- - -————. . -- —. ..__._- .. .. . -—- -- . .... . .- -.
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d fiuf

{[

32—=—— 1E(k,Po)-E(k,~l) -
fr G2-16

4

(
tan Q. J1-1# sin2 90 - tan ql J1-1# sin= T1

a )}
(36)

where

16=—
G.zv sin2 ‘?1

R2-
6)

f2

1- z=
R2~2 ‘

and sin2 ‘?0=

2

R2-
()
Ye-;

~242

For G eqw”l to 4, ,

d_ _ I-cuf

[

sin 90 sin 91 +=g (l+sin %)( -cos %) + L (sin~-sin (pI)

fr Cos= q. Cos= 91 (l+sin 9.)(-COS ‘?~) 2 1
(37)”

where

With the aid of equations (35), (36), ad (37) t We Positions Of
the four rolled-up vortices sre completely described. for all distances
behind the cruciform wings. Thus, for G less,t- 4, equations (7),

(10), (14), (24), ~d (35) completely determine the motion. The other
cases are given by the corresponding equations.

APPHCATION TO CRUCIFORM TRIANGULAR WING AT 45° B=

Determination of Initial Vortex Positions
and Vortex Streh@hs -

The equations thus far developed give the motions of the rolled-up
vortices in terms of their initial positions. In order to relate these
motions to physical cases involving a given cruciform wing at a
specified angle of attack, the initial positions of the four vortices
must be determined as a function of the lift coefficient. This alloll@s

‘The evaluation of,the circulation I’ will be discussed in the next
section. /

. . . . .——- —- ..— . _— ---
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to the determination of the parsmeter G in terms of the physical
quantities wh as lift coefficient and aspect ratio. Therefore, this
section will tieconcerned with the initial locations of the four vortices
for a given cruciform wing (banked 45°) at a given flight condition.

,
Since the vortices trailing behind the crucifomn witi actwl.ly leave

the trailing edges as two flat vortex sheets, the ‘initiallocations of
the four rolled-up vortices are somewhat fictitious. However, if each

t wing of the cruciform is considered as a plane wing in sideslip, the
} locations of the rolled-up vortices from each wing canbe calculatedI

from the span loading curve. Such a calculation, then, canbe considered
as yielding the positions of the foti vortices of the cruciform hefore

I any interaction has taken place between the vortices of the two wings,
namely, immediately behiridthe trailing edges. Hence, in order to calcu-

1 late the initial positiorisof the four.vortices, the span loadings of the
separate wings must’be determined.

1 In’reference
wing of a pointed
by the expression

9,’it Was shown that the load distribution on each
low-aspect-ratio cruciform wing with no body is given

(38) .

difference in.pressure.betweencorrespon~ Po~tswhere @ is the
on the upper and lower surfaces of the $miividual wing.

I
ds

Equation (38) is not valid for angles of sideslip greater than —.
i dx

The span loading is obtainedby integrating this load distribution in
the chordwise direction; that is

(39)

I
.!

.

I .,
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.
Equation (39) can he separated into two integrals, and since for trian-
gular wings ds/dx is a constant, the resulting span loading is

Clc = 4CL’S0

or, since ds/dx =

Czc k’s
o

.
~ for triangular wings,

(40)

(41)

. In the case of the unyawed plane wing, it is clear from symmetry
considerations that, if the vortex sheet is to roll up into two
vortices, all the vorticity on one side of the plane of symmetry must
eventually become rolled up into one vortex.” This leads to the conclu-
sion that each rolled-up vortex must be of strength equal to the maximum
circulation which in this case is the circulation in the plane of sym-
metry. A corollary of this conclusion is that each rolled-up vortex
contains only vortices of the same sense. This seems to be in accord-
ance with etisting knowledge of the behavior of vortex sheets as well as
with existing theories of the cumulation of vorticity as applied to
turbulence. For the wing in sideslip, whereas there is no symmetry, the
wing can againbe considered as composed of two segments, each having
vorticity in only one direction and hence each~producing one rolled-up
vortex. The dividing line between two such segments is at the spanwise
station of maximum circulation so that such a division leads to the
conclusion that each rolled-up vortex must have a strength equal to the
maximum circulation. Thus, the vortex strength is given by

r =Iz (Czc)u
2

(42)

Further, the distance between the vortices is givenby the fact that the
lift impulse must always be that of the wing itseif. !l!hus,

fJLts

2s’=—=
PuL’r (c~c)=

(43)

From equation (43) it canbe seen that the distqce 2s’ canbe
~epresented on the span loading curve as shown ‘inthe sketch, where the
srea under the rectangle is equal to the area under the curve.

.

— .—..———. -— .—.—— ---— ——.— —-
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I

I

“

.

-s0

As seen from the sketch, the actual location of each of the vortices
still requires the determination of the distances al and a2, It haS
already been argued that all the vorticity on one side of the m&imum
circulation must eventually be contained in one rolled-up vor#ex. Thus
the two areas canbe equated’on either side of the maximum; that 1s,

. Ym

(al + Ym)(czc)H =
J

c~c dy

-B.

+s0
(a, - Ym)(czc)max = J Clc dy

Ym
(44)

(Note tit ym is readily calculated by successive approximations.)

To apply the above information to the crucifomn wing at 45° bank,
one merely needs to note that for this case I

fJJ=p = CL sin

and that the initial position of vo&ex
nate system is now given by y. = —-

n

450 .&
G

number 1 in the banked
It is further pointed

f
al++

=yi+y2=—

Coordi- ‘
out that

... . -. . - —..—. .—— .—.. ——. .- .- —- —.—- . .. .... . .__ .._ _____ .. . . . . . .
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Since the lift of the cruciform

I

L=@ Pur (al+

NACATN 2605

wing can now be expressed as

(45)

and the wing area S is equal to 4Soa/A, it is seen that the circula-
tion I’ is given by

(46)

Sufficient information is now at hand to determine the initial
positions of the four vortices as a function of the angle of attack for
a particular aspect ratio or, more gener&lly, as.a function of a/A.
However, since the above span loaitlmgswere obtained from low-aspect-
ratio theory, for which ~ = ~Aa, the results can be considered as a

function of the parameter @A2 . It can be shown that this willmake
the results more general h that they will now apply with the accuracy
of linearized theory rather than of low-aspect-ratio theory. This maybe
seen from the fact that the loadings h Mnearized theory (see, e.g.,
reference 12) for triangular wings are simply those of lay-aspect-ratio
theory multipliedby a constant which depends upon the aspect ratio and
the Mach number. ..

The theoretical initial positicms of vortex 1 have been calculated
and are plotted against CL/fi2 in figme 3. IRcm these initial.qosi-
tions, the values of G were calculated (equation (14)), and are
plotted in figure 4. The Mmiting angle of sideslip of equations (38)
and (41) has been exceeded somewhat, as indicated by the dashed portion
of the curve in figure 3, in order to permit some interesting observa-
tions regardi@ the indicated trends. The constants appearing in the
equations for the vortex paths have now been canpletefi determined and
the three-~ional paths of the faux vortices canbe calculated for
any lift coefficient and aspect ratio. An illustration of such paths
for a typical case is presented in figure 5.

If one recalb the types of motion associated with the various
regimes of G, figure 3 talEs on added significance. The passing frcnn
periodic motion to aperiodic motion simply indicates the inwsrd move.
ment of the initial position of the upper two vortices with angle of
attack until their velocity in the z direction is so geat that once
they pass through the lower vortices, the latter never catch up to
complete the cycle. If this inward movement were to continue as the
angle of attack increases (as shown in fig. 3) then at CL/fi2 = 0.244
the two upper vortices would have coalesced, leaving only the two lower
vmtices which would then travel parallel to the z axis as in the case
of a plsne wing.

.

*

.
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Leapfrog Distance

.,
I

As an indication of the practical importance of the motion of the
four rolled-up vortices in the calculation of downwash, a distmce
behind the wing which is characteristic of the motion wild be calculated.
This distance is taken as the distance at which the four vortices have -
become collinear, that is, the distance behind ~e~ying at which the
upper two vortices are just passing through the--lowertwo. This willbe
referred to as the leapfrog distance ‘L measured from the wing trailing.
edges. .

The leapfrogdi%%nce canbe calculated directly from eqyation (31)
by taking the upper limit of integration to be the value of yl in the
colliaear configuration. This value of yl is obtained frmn equa-
tion (14) by setttig z= ~ equal to zero. Solution of this equation
then gives the limit of bte~ation yl as a function of G only W
therefore of CL/KA2. The definite titegal of equation (fl) has been
evaluated by the meth@ discussed previously for the entire range of G
and the resulting leapfrog distmces are plotted (in terms of chord
lengths) against ~/@2 in figure 6. For purposes of comparison, as
well as to provide a measwe of the usefulness of the assumption that
the four vortices are fully rolled up at the trailing edge, the distance
for the vort= sheets to roll up (as calculated by Kaden, reference 1) is
also shown in this figure. Since the distance to roll w as shown in
figure 6 is that for a plane wing, it should be taken as an tication
of the average distance for the four vortex
because of the asymmetric span loading, the
somewhat faster, while those fram the u~er
more slowly.

The outstanding point to be noted from
enon of leapfrogging can occur within a few

sheets to roll up. Ac~,
lower vortices ~ roll up
~ P~el-s will roll up

figure 6 is that the phenom-
chord lengths at reasonable

lift coefficients for low-aspect-ratio triangular cruciform wings.
The calculations are expected to represent the physical phenomenon most
accurately‘whenthe leapfrog distance is considerably greater than the
distance for the vortex sheets to roll.up. The c~es presented h I

figure 6 have been terminated at a value of
I

C~I-(A of 0.176, since -
above that value (calculatedfrom low-aspect-ratio theory) the upper
leading edges of the cruciform wing become trailing edges and the span
losxidistributions are no longer given by equation (41).

Rolling Up of the Vortex Sheets
. .

As was mentioned at the outset of the analysis, the assumption that
the wings of the cruciform act independently of one another is not
strictly applicable to the present problem because once the bound
vortices of the tings become free (i.e., immediately behind the traiMng

. . ---- .- ..-. . . - .— —..-. .—.—— ————- ..—- -— ---- ,.- ----- ..—— -----. ... . - —----- - —
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edge) the two vortex sheets influence one another in their subsequent
behavior. Thus, while the foregoing analysis has treated in some detail
the complete motions of the fully rolled-up vortices, it has not
considered the mutual effects of the vortex sheets during the rolling–
WP process itself. Although a complete knowledge of the rolling-up
process couldbe gained onlyby a detailed numerical analysis, some
important questions regarding the over-ail interaction effects can be
answered by emmining the nature of the vortex sheets in their initial
cruciform confi~tion. Illustrated schematically in the sketch is the

A

Y

Bt

c’

iiithlvortex config-
uration, showing the
span loading or circu-
lation distribution,
which is the same on
each wing, and the
resulting vorticity with
directions of rotation
indicated by the arrows.
In view of the srguments
presented earlier, it is
clear from the sketch
that all the vortices
contained in the dis-
tance AO will roll up
into a single vortex,
and that all those in
BC tin ~0~ UP intO
another single vortex
with opposite direction
of rotation. Further-
more, the strength of
the latter vortex must
clearly be equal to the
msximum circulation
r=.

On the other hand, it is not clear just what will become of the
vorticity contained in OB. If the wings did, in fact, act independ-
ently, then OB would certainl.ybe combined with AO to form a single
vortex of strength r However, the presence of a plane of symmetry
sty= O requires%: AO and OB now be considered as sepsrate
vortex sheets since the vorticity at O vanishes due to symmetry.
In fact, closer examination of the portion of the sheets near O reveals
that, due to tie directions of rotation, the broken-line sheet AOB’
must move away from the sheet AfOB, thus severing-AB and A’B’ at O.
It is dcnibtful,then, that the vorticity originally contained in
OH b.ndOBt will ever become entrained as a part of the upper two
vortices. It will, in fact, later be shown, from the experhents con-
ducted for this report, that this amount ofvorticity actually forms

I

.

.

.
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a separate sheet
vortices treated

which is not identified as part of any of the four
thus far.

The foregoing observations suggest a possible improvement on the
four-vortex analysis atieady carried out; that is, the strengths and
initial positions of vortices 1 and 4 could be modified to take into
account the fact that the vorticity in OB and OB’ actually is not
contained in vortices 1 and 4. The amount of vorticity in OB
(hereafter referred to as r.) and the resulting modification of J’1
is readily calculated from t~e span
sketch. ‘Thestrengths of the three

.

and

Clc

-s0

The initial

load distribution, as shown in &e
vortices shown are stiply given by

I I

(47)

positions of the vortices are again calculated by equating
the lift imp-&e before and after rolling up, but now rl is considered
to contain only the vorticity arising “fromits side of the wing; that is,

J

o.
a~’ (c~c)o = CIC dy

— so Ym

% (Clc)o+ (ym-ac)(clc)~ =
J

C~C dy

o
+s0

(apYm) (czc)~ =
f

CIC dy

Ym

(48)

_ ______ . . . - ._ — ---- .. .. . .~-— -- . --- . ... . . .. . . .
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.

Note that a2 is unchsnged by the introduction of

With the aid of the foregoing sketch, one can
cruciform-wi% lift in terms of the initial vortex

I .

1L’=&!pU ‘1 (al’ + ~) + r= (a2-aC)

and conclude that .

rC*

again express
positions

r= Afz302

()

CL
—=
u [y(al’ +%) +a=–~l r

where

r,
Y =+

the

(49)

(50)

z

r4

c
I

3

rl

. .

1

The original four-vortex prob-
lem has actually now been replaced
by the six-vortex problem illus-
trated in the sketch. However, due
to the relatively small strength of
rc, as well as to the close prox-
imity of the two opposing vortices
I’c,the influence of these addi-
tional vortices on the motions of
the other four is expected to be
small. An iterative approach to
the exact solution can be obtained
by neglecting this influence once
the initial position and strength
Of rl have been modified to allow
for rc. Thus the problem is again
simplified to that of the motion of
four vortices, but now they have

.

unequal strengths. (The ratio of
the strengbhs 1’1 to l?= is plotted against CL/YtA2-in fig. 7.)
This fact alone complicates the mathematics to the point that the
integrations can no lopger be carried out except by numerical methods.
Therefore, the complete motions-will not be determined, but the leapfrog
distance will be recalculated in order to illustrate the effect of the
new assumptions on the results. The leapfrog distance is readily
checked experimentally~ as wi~ be shown in the expe~imental section. .

.

—-— . .. . . ——— .—-.-..——— ——. —___——_ ———-— .,
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Modified Four-Vortex Calculation

The equations for the relative mction of the four vortices can
againbe set up by the use of the general equations”(s) and (4) with a
new statement of the center-of-gravityrule in which the vortex
strengths are no longer taken to be equal. That

zy~ri rlYl + ~2Y2
Yc.g. = *i = =e=

rl.+ r2

If it is noted that in the initial configuration

%,2= y~ + Y2; y~ =-Yo; Y2 = e (1

.

is, ,

constant (51)

+ Y) – 7YC) (52)

then equations (3) and (4) canbe used as in the origi~ analysis,
resulting in the following expression,(in dimensionless form) for the
relative vortex paths:

[

Y~
2

()

=1,2
K ~ (1-7)+1+7T (: X+7-Y 2)$- [~ - J(,+7)~

—=
e

‘ - ‘(37 (’+7-73;

where
(53)

The velocity vl is recalculated in the same manner as before, with
the result

.

) .

. . . ....______ —.-.-. ——z. . ._ . . . . . . . .
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I

2r~

()

!&I,’2
vl=—

T
x

xe

.

.

(54)

If this expression is now used in equation (30) to determine the
downstream distance d, the resulting (dim&sionl.ess)form of the
integral is

d fiUe

-=~xe

It is readily=een, without mibstituting the expression for 21 de
as gimnby equation (53), that analytical evaluation of the integral
of equation (55) would be extremely difficult. This integration was
carried out.mmerically with the definite upper limit as given by the
collinear configuration of the four vortices (i.e., 21 = = O) and the
resulting values of the leapfrog distance dL are plo%ted on
figure 6. It is noted that the resulting curve l.s,higherthan mat
calculated in the original analysis. This is due primarily to the
tier strengths of the upper two vortices and to the consequently
longer time required for them to pass through the lower two because
of reduced induced velocities of one won the other.

.-WA!133R—TANK~
a. .
8,.

The motio~ of the vortex sheets behind a triangular cruciform
wing of aspect ratio 2were observed experiment~’y by means of a
water tank (fig. 8). The model was mounted on a vertical track which
was driven at ~form speed into the tank, while photographs of the

.

,

.
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I
I

. water surflacewere recorded by a motion picture camera. ‘I!hetraces of
‘ the vortex sheets were made visible by applying fine aluminum powder to

,! the trailing edges of the model. The model had a span of 8 inches and
I wae made of 0.050-inch sheet metal.
I

In general, the purpose of the water-tank studies was sinrp~yto
!
( illustrate the motions analyzed in the earlier portions of this report.

(A typical series of photographs enlarged from the moving pictures is

~
presented jn fig. 9.) However, it,was a simple matter td obtain
experimental values of the leapfrog Qistance by means of a tape which

1 moved with the model track and recorded on the movie film the distance
traveledby the wing. The results of such experiments are presented in
fi@re 6 for several angles of attack and it is observed that.the agree-(
ment with the modified four-vortex calculation is remarkably good.

I

, The formation of a separate vortex”sheet arising from the center

I portion of the cruciform wing, as discussed in a previous section, can
be seen in the photographs of figure 9. This is the phenomenon that

, has been taken into account in the modified theory.

I It is interesting to note (fig.9) that the two lower”vortices
extend downstream in nearly thefree-stresm direction as indicated by
their positions relative to the wing-tip markers. ‘l%iswas also true
for the calculated paths of figure 5. ,

An important feature of the actual flow field as distinguished from
the simplified model used for the analysis is the persistence of the
vortex sheets between the rolled-up vortices as seen in figure 9.-
Because of this fact, the theoretical paths of the vortices are not,!
expected to be accurate at distances behind the wing greater than dL>I
since vortices 1 and k will then begin to become entrained in the outer
windings of the sheet that constitutes vortices 2 and 3. However, the
magnitude of this effect will depend upon the rate of,rolling--upof
the vortex sheets and it woti”dhe expected to be most serious at the
lower
being

lift coefficients (or higher a~pect ratios) where the motions
considered are not of practical concern.

I

CONCLUDING REM#lUS

A detailed analysis has been made of the motions of the four .fuIly
rolled-up vortices trailing behind a cruciform wing which is banked 45°.
Equations have been developed describing”the paths of the four vortices
in three dimensions, and calculations have been made of the distance
behind the
lower two.
plan form.
the report

wing at *ich the upper two vortices leapfrog through the
The latter calculations were confined to
The simplified analysis presented in the
has been modified to account for the fact

wings of triangubr
early portions of
that all the

. .—.
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vorticity shed
four rolled-up
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from the cruciform wing is not actually contained in the
vortices.

It was found that the leapfrog distance decreased with increasing
lift coefficient and increased with increasing aspect ratio. For angles
of attack up to a certain critical value of C~fiA2, the vortex motion is
periodic with downstream distance, while above the critical value the
motion is aperiodic.

From the f~ct that the leapfrog phenomenon can occur within two
chord lengths of the wing trailing edges, it is clear that downwash
calculations even at distances less than one chord length behind
low-a,spect-ratiocruciform wings must take into account the vortex
motions considered in this report. Once the positions of the vortices
are known, there are methods available for approximating the downwash,
and corrections can be made for the viscous vortex cores by assuming
that they rotate as solid bodies.

For angles of bank other than 45°, it is doubtful, due to the lack
of symmetry, that calculations of the type presented here could be made
by other than numerical procedures.

Ames Aeronautical Laboratory,
National Advisory Committee for,Aeronautics,

Moffett Field, Calif., Oct. 5, 1951.
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F@re 5.- ~ical three-dimengioti patha of four vortices trafling behind cruciform wing banked 45°;

aspect ratio 2. CL = 1.41.
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d/c = O.11 d/c = o.gk

d/c = 0.33

n~n

d/c = 0.6L

Figure 9.- Photographs
Cruciforal

,>

d/c = 1.38

d/c
‘-1”79 ~

A-16567 ~
(a).S$atias 1 to 6.

of wake at various stations behind a triangular
wing of a“spectratio’2. CL % 0.66.
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d/C = 2.2k d/e = 3.65

a/C = 2.83 d/c = 4.26

d/c = 4.81_

(b) Stations 7 to 11.
A-16568

Figure 9.-,Concluded.:
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